

Monday, 25 August 2025

5:20 - 16:50	Poster Session I Prometheus Hall	Submissio ID
	Voltage Breakdown Analysis - A Dive into Tafel-Equation and Mass Transport Fabian Scheepers Fabian Scheepers	<u>1</u>
	Transient Operating Strategies for Fischer-Tropsch Tail Gas Recirculation into a 120 kW SOEC Reactor Matthias Riegraf ¹ ¹ German Aerospace Center (DLR)	<u>7</u>
	Identification of loss processes in PEMWE <u>Debora Brinker</u> ¹ ¹ Karlsruhe Institute of Technology - Institute of Applied Materials - Electrochemical Technologies	<u>19</u>
	Ohmic resistance: the bubble story of alkaline water electrolyzers Saksham Pandey ¹ ¹PhD candidate, TU Eindhoven	<u>24</u>
	Cold rolled aluminium foil on nickel mesh as a route to high-performance Raney nickel electrodes for hydrogen production in alkaline electrolysis Matthias Gramlich ¹ ¹ Fraunhofer IFAM, Dresden Branch	<u>26</u>
	Performance and Durability Trends of Low-Iridium Loaded Electrodes with Commercial Catalysts in PEM Water Electrolysis Nikolai Utsch ¹ ¹ Forschungszentrum Jülich	<u>27</u>
	Influence of Iron on the Oxygen Evolution Reaction in Anion Exchange Membrane Water Electrolyzers (AEMEL) Ellis Donker ^{1, 2} ¹ TNO, ² TUE	33
	How electrode surface engineering and bubble mannt improves alkaline water electrolysis Hannes Rox ^{1, 2} Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Process Engineering and Environmental Technology, Technische Universität Dresden	<u>35</u>
	Validation of ENDURE testing protocols using a 10 kW baseline stack with Ni foam electrodes <u>Lidia</u> <u>Martínez Izquierdo</u> ¹ ¹ Aragon Hydrogen Foundation	<u>36</u>
	μ-kinetic modelling of IrO2 dissolution as catalyst for PEM Water Electrolysis Pål Emil England Karstensen ¹ ¹ SINTEF Industry	<u>37</u>
	Advancing Standardization in Alkaline Water Electrolysis Felix Lohmann-Richters ¹ ¹ Electrochemical Process Engineering (IET-4), Forschungszentrum Jülich GmbH	<u>42</u>
	Bio-Inspired Electrocatalyst from Cable Bacteria for the Oxygen Evolution Reaction Kimia Zarean Mousaabadi ¹ Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Central Jutland, Denmark	<u>43</u>
	Novel 3D Fibrous Electrodes for Water Alkaline Electrolysis Andrea Russo ¹ ¹ Technical University of Denmark	<u>50</u>
	Understanding and controlling crack formation in catalyst layers for PEM electrolysis Nadine Zimmerer¹ ¹Thin Film Technology / Karlsruhe Institute of Technology	<u>51</u>
	Large amplitude fluctuations in water electrolyzer current supply: dynamic voltage response modelling and effect on active power consumption Pietari Puranen 1 LUT	<u>52</u>

Cell-construction-dependent predictive modelling of gas supersaturation in PEM electrolyzers governing corresponding crossover and electrochemical effects Marcus Tümmler ¹ ¹ Fraunhofer IWES	<u>55</u>
Evaluating IrO2 stability using in-line setup of electrochemical flow cell and ICP-MS Øyvind Lindgård 1NTNU	<u>58</u>
The Influence of AI on NiFe Electrocatalysts for Enhanced OER in Alkaline Water Electrolysis <u>Tugce Ustunel 1, 2 1 Umeå University, 2 Permascand</u>	<u>59</u>
Electrochemically Formed Nickel Hydroxide Pre-catalysts for Alkaline Oxygen Evolution Reaction Tested Under Industrially Relevant Conditions Johan Ehlers Department of Energy Conversion and Storage, Technical University of Denmark	<u>60</u>
Alkaline Water Electrolyzer Behavior Under Dynamic Operation Lauri Järvinen ¹ LUT University	<u>61</u>
Impact of REDII and renewable energy source on RFNBO H2 ratio from electrolysers Anders Ødegård¹ ¹SINTEF Industry	<u>62</u>
Effect of Voltage Elevation on Energy Efficiency of Power Electronic Converters in the Industrial Alkaline Water Electrolyzers Galdi Hysa ¹ ¹ LUT University	<u>66</u>
Investigating the effect of operating conditions on void fraction, stray currents, and current distribution in an alkaline water electrolysis stack using CFD Muhammad Asim Sarwar ¹ ¹ LUT University	<u>68</u>
Towards seawater electrolysis in alkaline media: assessing the impact of hypochlorite Nathan Wauthy ¹ ¹ Université catholique de Louvain (UCLouvain), Div. of Materials and Process Engineering, Louvain-la-Neuve, Belgium	<u>73</u>
Manganese-cobalt based electrocatalysts for the oxygen evolution reaction in acidic water electrolysis and electrowinning Duygu Gumus ¹ Norwegian University of Science and Technology	<u>84</u>
Reversible Performance Recovery in PEM Water Electrolysis: Insights from Time-Resolved NAP-XPS and Electrochemical Analysis Alexander Rex ¹ Institute of Electric Power Systems, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany.	92
Durability Investigation for PEM Water Electrolysis Cells Merit Bodner ¹ ¹ Graz University of Technology	<u>97</u>
Challenges during direct coating and drying of electrodes for proton exchange membrane water electrolysis Linus Janning ¹ ¹Thin Film Technology (TFT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany	99
Curvature-controlled Ir@IrOx/hollow TiO ₂ catalysts for enhanced oxygen evolution reaction activity and durability in PEM water electrolysis HyunWoo Chang¹ ¹Korea Advanced Institute of Science and Technology	100
Development of a 5 kW AEM Electrolyzer Marian Garcia-Montolio ¹ ¹ Leitat	<u>104</u>
Studying live catalyst dissolution of different AST-Protocols in a full cell PEM electrolysis setup with online ICP-MS measurement technique Torben Gottschalk ¹ Leibniz University Hannover, IfES-EES, Appelstr. 9A, 30167 Hannover, Germany	<u>106</u>
The Use of In Situ Reference Electrodes to Accelerate Development of Green Hydrogen Technologies Billie Sherin ¹ ¹ National Physical Laboratory	<u>107</u>

Disruptive ionomer-free electrode for anion exchange membrane electrolysis Yejung Choi ¹ ¹ SINTEF Industry	<u>112</u>
The Influence of Electronic Metal-Support Interactions in Oxide-Supported Iridium Oxide Catalysts on the Performance of the Oxygen Evolution Reaction Ziba S. H. S. Rajan¹ ¹HySA/Catalysis Centre of Competence, Catalysis Institute, Department of Chemical Engineering, University of Cape Town, 7701, South Africa	113
A CFD model for bubble growth after detachment from an electrode. Nikhilesh Kodur Venkatesh ¹ Delft University of Technology	<u>114</u>
The impact of anodic porous transport layer type on the performance of PEM water electrolyser Martin Prokop ¹ ¹ University of Chemistry and Technology, Prague	<u>115</u>
Enhancing Anion-Exchange Membrane Water Electrolysis anodes via advanced electrodeposition of porous NiFe structures Maximilian Cieluch ¹ ¹ Westfälische Hochschule University of Applied Sciences	<u>117</u>
Structural Optimization of TiO2 supported IrO2 Catalysts for Proton Exchange Membrane Water Electrolysis Darius Hoffmeister ^{1, 2} ¹ Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), ² Department Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-	<u>122</u>
Manipulating the double layer microenvironment by Zn single atom for fast alkaline hydrogen evolution on Ru Minjun Kim ¹ ¹ Korea Advanced Institute of Science and Technology	<u>123</u>
The influence of shutdown strategies on PEMWE performance: single-cell and short-stack experiments Thomas Holm ¹ Institute for Energy Technology	<u>125</u>
Going Beyond Platinum: Cathode Layer Optimization for PGM-free Catalysts in PEM Water Electrolysis Janna Wierper ¹ ¹ Fraunhofer UMSICHT	<u>126</u>
Development of Conductive Oxide Coatings to Reduce the Use of PGMs in Bipolar Plates of PEM Electrolyzers Using Hipims Christian Calero-Almeyda ^{1, 2} ¹ Centro Láser, Universidad Politécnica de Madrid, 2nano4energy SL	127
Multiphase simulations, experiments, and theory for optimal electrode-diaphragm spacing in near-zero gap alkaline water electrolysis Wouter Leen van der Does ¹ ¹ TU Delft, Process & Energy	<u>129</u>
CFD analysis of the role of natural convection on gas crossover in membraneless flow-through electrolysers Ali Yahyaee ¹ Delft University of Technology	<u>132</u>
Metal-incorporated Ruthenium Oxide Nanosheet Catalysts for Oxygen Evolution Reaction in PEM Water Electrolysis DongWon Shin ¹ ¹ Korea Advanced Institute of Science and Technology (KAIST)	<u>134</u>
Kinetic Analysis of Iridium-Cerium-Oxide Electrocatalysts for the Oxygen Evolution Reaction in PEM water electrolysis Mareike Sonder ¹ Institute for Applied Materials - Electrochemical Technologies, Karlsruhe Institute of Technology	<u>135</u>
Bubble Distributions in Porous Electrodes for Alkaline Electrolysers: Insights from Simulation and Neutron Imaging Andreas Jacobsen ¹ ¹ Department of Mechanical and Production Engineering, Aarhus University	136
Correlation of Cathode Catalyst Layer Properties and Anion Exchange Membrane Water Electrolysis Performance Julia Mehler ¹ ¹ Corporate Research, Robert Bosch GmbH, Renningen/Germany	<u>139</u>

Advancing electrode technology for classical alkaline electrolyzers at Stiesdal Hydrogen A/S <u>Lakhotiya</u> ¹ ¹Stiesdal Hydrogen A/S	<u>140</u>
Utilization of Pt Black as Catalyst Support in the Anode of PEM Water Electrolyzers Khajidkhand Chuluunbandi ¹ ¹ Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen	143
Elucidating the effect of dynamic operation on catalyst layer stability in proton exchange membrane water electrolyzers Magdalena Müller ¹ ¹ SINTEF Industry	<u>145</u>
Interplay between structure and electrocatalytic activity in flow-engineered three-dimensional porous transport electrodes for alkaline water electrolysis Renaud Delmelle ¹ ¹ Division of Materials and Process Engineering, Université catholique de Louvain	<u>146</u>
Influence of different cell spacer configurations on gas void fractions related to industrial alkaline water electrolysis cells Felix Gäde ¹ Clausthal University of Technologies / EST	<u>149</u>
Performance and degradation of positrodes for proton ceramic electrolysers Mengxin Wu ¹ university of oslo	<u>152</u>
Alkaline Stability of Metal Organic Frameworks for Energy Applications Jens Oluf Jensen ¹ ¹ Technical University of Denmark, DTU	<u>159</u>
Electrochemical activation of Ir-based catalysts oxygen evolution reaction catalysts Irina Pushkareva 1 North-West University, HySA Infrastructure Center of Competence	<u>162</u>
Investigation of Preparation Parameters for Membrane Electrode Assembly Towards Anion Exchange Membrane Water Electrolysis (AEMWE) Mostafa Moradi ¹ ¹ Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Arnstadt, GermanyFraunhofer Institute for Ceramic Technologies and Systems IKTS, Arnstadt, Germany	<u>164</u>
Gas permeation in PEMWE- run-in behaviour on lab scale: Experimental and model-based investigation Lucas Anschütz ¹ ¹ Siemens Energy Global GmbH & Co. KG	<u>175</u>
In-situ measurement of mechanical forces in the MEA in PEM water electrolysis Nils-Eric Rahm¹¹Leibniz Universität Hannover IfES-EES	<u>179</u>
Membraneless flow-through water electrolyser with low pressure drop Jelmer Postma ¹ ¹ TU Delft	<u>188</u>
Modeling Chemical Membrane Degradation in PEM Water Electrolysis: Integration of Experimental Fluoride Emission Measurements Christoph Eckert ¹ Institute of Electric Power Systems, Leibniz University Hannover	<u>190</u>
Platinum Is Not Just Platinum: Experimental Analysis on the Effectiveness and Stability of Different Gas Recombination Catalysts for PEM Water Electrolysis Steffen Brundiers ¹ Leibniz University Hannover, Institute of Electric Power Systems, Appelstraße 9a, 30167 Hannover, Germany	<u>215</u>
A framework for multi-scale two-phase flow simulations in Proton Exchange Membrane Water Electrolyzer Wiebke Schrader ¹ Institute of Fluid Mechanics, Karlsruhe Institute of Technology	<u>248</u>
Transition Metal Phosphides as Alternative Electrocatalysts to Noble Metals for Water Splitting Magdalena Streckova ¹ Institute of Materials Research, Slovak Academy of Sciences	<u>262</u>

Tuesday, 26 August 2025

16.50	10.20	Poster Session	II 9. Drinko
10.50 -	· 18530	Poster Session	II & Drinks

Prometheus Hall

Alkaline water electrolysis beyond 3 A/cm2 a Maximilian Demnitz ¹ ¹ Technische Universiteit Ein	t less than 2.3 V using catalyst coated diaphragms dhoven	3
Unleashing the potential of Raney Nickel election	etrodes at high current density Hsin-Yu (Stella) Chen ¹	<u>16</u>
Plasma-sprayed non-PGM anodes and cathod German Aerospace Center	les for alkaline water electrolysis Regine Reißner 1 1DLR	<u>2</u> :
Transition Metal Phosphides: Innovative Cata Fatemeh Poureshghi ¹ ¹ Nel Hydrogen ASA	lysts for Oxygen Evolution Reaction in Alkaline Media	4
Electrocatalytic-Catalytic Process for Decoupl Davydova ¹ ¹ Technion - Israel Institute of Technology	ed Water Electrolysis in NaBr Electrolyte <u>Elena</u> ogy	<u>4</u> 9
The effect of electrode hole size on zero gap Process & Energy. Leeghwaterstraat 39, 2628 CB	alkaline water electrolysis <u>J.W. Haverkort</u> ¹ ¹ TU Delft, Delft, The Netherlands	<u>8</u>
	is at Elevated Temperatures: Test Bench Development 20k 1	<u>16</u>
Performance Sunwoo Joo 1 Helmholtz-Institute	on a Zero-Gap Alkaline Water Electrolysis Cell e Erlangen-Nürnberg for Renewable Energy (IET-2),	<u>16</u>
Performance Sunwoo Joo ¹ ¹ Helmholtz-Institute Forschungszentrum Jülich GmbH Quantifying Spatial Extension of Reaction Zor		
Performance Sunwoo Joo ¹ ¹ Helmholtz-Institute Forschungszentrum Jülich GmbH Quantifying Spatial Extension of Reaction Zor Systems Einar Vøllestad ¹ ¹ SINTEF IrO2/MnO2 metal oxide-support interaction e	e Erlangen-Nürnberg for Renewable Energy (IET-2),	17
Performance Sunwoo Joo¹ ¹Helmholtz-Institute Forschungszentrum Jülich GmbH Quantifying Spatial Extension of Reaction Zor Systems Einar Vøllestad¹ ¹SINTEF IrO2/MnO2 metal oxide-support interaction e Luo¹ ¹Suzhou Lab	e Erlangen-Nürnberg for Renewable Energy (IET-2), ne on Model BaGd0.3La0.7Co206-δ Positrode enables robust acidic water oxidation Xiaoyan (Jessica) es for PEM and AEM Water Electrolysis via MEA	163 170 173
Performance Sunwoo Joo ¹ ¹ Helmholtz-Institute Forschungszentrum Jülich GmbH Quantifying Spatial Extension of Reaction Zor Systems Einar Vøllestad ¹ ¹ SINTEF IrO2/MnO2 metal oxide-support interaction e Luo ¹ ¹ Suzhou Lab Unlocking the Potential of PGM-Free Catalysts Optimization Julia Jökel ¹ ¹ Fraunhofer UMSICH ¹ Advanced Catalysts for Proton Exchange Mem Atomic Layer Deposition Fiona Pescher ^{1,2} ¹ U	e Erlangen-Nürnberg for Renewable Energy (IET-2), ne on Model BaGd0.3La0.7Co206-δ Positrode enables robust acidic water oxidation Xiaoyan (Jessica) es for PEM and AEM Water Electrolysis via MEA	<u>17</u>
Performance Sunwoo Joo¹ ¹Helmholtz-Institute Forschungszentrum Jülich GmbH Quantifying Spatial Extension of Reaction Zor Systems Einar Vøllestad¹ ¹SINTEF IrO2/MnO2 metal oxide-support interaction e Luo¹ ¹Suzhou Lab Unlocking the Potential of PGM-Free Catalysts Optimization Julia Jökel¹ ¹Fraunhofer UMSICH¹ Advanced Catalysts for Proton Exchange Mem Atomic Layer Deposition Fiona Pescher¹.² ¹U ²Freiburg Materials Research Center (FMF) Electrodeposited and electrochemically cond	e Erlangen-Nürnberg for Renewable Energy (IET-2), ne on Model BaGd0.3La0.7Co2O6-δ Positrode enables robust acidic water oxidation Xiaoyan (Jessica) es for PEM and AEM Water Electrolysis via MEA T inbrane Water Electrolysis Synthesized via Fluidized Bed	17: 17:

	,
Investigation of additives for PEM water electrolysis anode electrodes with low iridium loadings to increase layer thickness and improve electrical conductivity Jakob Heubner 1 Fraunhofer ISE	<u>191</u>
Composite Bipolar Plates for PEM Water Electrolysis Oskar Weiland Leibniz University Hannover, Institute of Electric Power Systems	<u>192</u>
Advanced Nickel-Based Porous Transport Layers for Efficient Hydrogen Production Irina Galkina ¹ ¹ Forschungszentrum Jülich GmbH, Institute of Energy Technologies (IET-4), Electrochemical Process Engineering, 52425 Jülich, Germany	<u>193</u>
Solution Combustion Synthesis of Ni- based electrocatalyst for Oxygen Evolution Reaction LIYA SHERLY LEO ¹ ¹ Ph.D	<u>201</u>
Predominant Role of Ruthenium Nanoclusters in the Presence of Single Atoms for Enhanced Alkaline Hydrogen Evolution Reaction Jae-Hoon Baek 1Ulsan National Institute of Science and Technology	202
High-Period Element Doping as a Key Driver for Hydrogen Evolution in Proton Exchange Membrane Water Electrolyzer Se Jung Lee ¹ ¹ Ulsan National Institute of Science and Technology	<u>204</u>
Anion exchange membrane water electrolysis utilizing superparamagnetic ferrites as OER catalysts Anna Kitayev ¹ , Ervin Tal Gutelmacher ¹ ¹ Hydrolite	<u>205</u>
High Entropy Material Catalysts For Efficient Low-Alkaline Anion Exchange Membrane Water Electrolyzer Operation Arthur Thévenot ¹ ¹ TU Berlin	206
TiOx protected stainless steel for proton exchange membrane water electrolysis Konstantin-Egorov ¹ ¹ Empa, Swiss Federal Laboratories for Materials Science and Technology, Dubendorf/Switzerland	207
Influence of Hydrogen Recombination Activity of Different PTL Coatings on Measured Hydrogen in Oxygen Content in PEM Water Electrolysis Steffen Brundiers ¹ ¹ Leibniz University Hannover, Institute of Electric Power Systems, Appelstraße 9a, 30167 Hannover, Germany	<u>210</u>
Comparative study of pinhole detection methods in proton exchange membrane water electrolysis $ \underline{\text{Davide Ripepi}^1} {}^{1}\text{TNO} $	<u>213</u>
Temperature Optimization of PEM Water Electrolyzers for Minimum Hydrogen Prices Gregor Zwaschka 1 Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik	214
Dynamic modelling of the PEMWE balance of plant Amalie Bisgaard Møller ¹ University of Oslo	<u>223</u>
Non-permanently Charged Anion Exchange Ionomers -'super' strong Brønsted base Phosphazene as Functional Group Jacqueline Goldmann ¹ IMTEK - Department of Microsystems Engineering, Albert-Ludwigs University Freiburg	<u>224</u>
Impact of MEA Conditioning on the Performance of PEM Electrolyzers Ali Javed¹¹¹Institute of Energy Technologies, Fundamental Electrochemistry (IET-1), Forschungszentrum Jülich, Jülich, 52425, Germany	225
Degradation Exploration of Proton Exchange Membrane Water Electrolysis under a Fluctuating Power Yali Li ¹ Suzhou Laboratory	230
Optimization of electrochemical synthesis of NiFe Layered Double Hydroxides for Oxygen Evolution Reaction in an Alkaline Water electrolysis Jaromir Hnat ¹ ¹ University of Chemistry and Technology Prague	233

Boosting the performances of IrO2 elecro-catalyst by engineering the porosity for Proton Exchange Membrane Water Electrolyzers Tamina Leygonie ¹ ¹ LCMCP Sorbonne Université	<u>234</u>
Assessing Hydrogen Crossover Characteristics in Anion-Exchange Membrane Water Electrolysis of various commercial Membranes Alexander Kohushölter ¹ ¹ Albert-Ludwigs-Universität Freiburg	<u>235</u>
The effect of anode catalyst layer packing density and conductivity on polymer electrolyte water electrolyser performance Zarina Turtayeva ¹ Paul Scherrer Institute	237
Revolutionizing Green Hydrogen Production with Next Generation PEM Water Electrolyzer Electrodes (HOPE) Anita Hamar Reksten ¹ ¹ SINTEF Industry	239
Asymmetric Crossover in Asymmetric Diaphragms for Alkaline Water Electrolysis Mikkel Rykær Kraglund ¹ ¹ Technical University of Denmark	<u>241</u>
Activation tests in PEM electrolysis - methodology and discussion Markus Nohl ¹ ¹ European Commission, Joint Research Centre (JRC), Petten, Netherlands	<u>244</u>
Enhancing Catalyst Layer Homogeneity in AEM Water Electrolysis: A Systematic Study of Nickel Hydroxide Ink Formulation Susanne Koch ¹ ¹ 1Electrochemical Energy Systems, IMTEK Department of Microsystems Engineering, University of Freiburg Georges-Köhler-Allee 103, 79110 Freiburg, Germany	<u>245</u>
Carbon Nanofibers for Electrolysis: Performance, Degradation and Ionomer Contact Dylan Schulz Chalmers University of Technology	<u>246</u>
Fluorine-free sPPS membranes combining good efficiency, high stability and low gas crossover in PEM electrolysis Clara Schare ¹ ¹ Hahn-Schickard	<u>247</u>
Selection of materials for alkaline water electrolysis cells Gema Sevilla ¹ ¹ NORDEX ELECTROLYZERS	<u>251</u>
In situ Fe3+ incorporation vs. compounded Fe doping of NiO and Ni(OH)2 catalysts for the alkaline oxygen evoluton reaction Konstantin Kimon Rücker ¹ Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Carl-von-Ossietzky-Str.15, 26129 Oldenburg, Germany	<u>252</u>
Integrated reference electrode for AEM-WE MEA-characterization Bastian Kaufmann ¹ ¹ The Hydrogen and Fuel Cell Center (ZBT GmbH)	<u>256</u>
Wire Electrospun Nanofibers for Ultra-Low Loaded Anodic Catalyst Layers in PEM Water Electrolysis Edgar Cruz Ortiz ^{1, 2} ¹ Hahn-Schickard, ² Uni Freiburg	<u>259</u>
Comparison of Iridium Metal and Oxide Catalysts as PTEs via PVD Lukas Löttert ^{1,2} ¹ Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, ² Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg	<u>260</u>
High-Entropy Transition Metal Phopshide as an Efficient Catalyst for Alkaline Hydrogen Evolution Reaction Alexandra Gubóová ¹ Institute of Materials Research, Slovak Academy of Sciences	<u>264</u>
Iridium catalyst dissolution in PEM water electrolysis single-cells under steady-state and dynamic operation using single-pass water flow <u>Tobias Franz</u> ¹ ¹Otto-von-Guericke Universität Magdeburg	<u>275</u>
Simplifying Quantification of Shunt Currents-Introducing a dimensionless quantity Sierd Kuil ¹ ¹Technical University of Eindhoven	<u>279</u>

Sputtered Low-Loading Ru-Based Porous Transport Electrodes for the Anode Catalyst in Proton Exchange Membrane Water Electrolysis Martin Krammer ¹ AIT Austrian Institute of Technology, Center for Energy, Power and Renewable Gas Systems	<u>281</u>
Synthesis and Characterization of nanostructured OER Electrocatalysts for PEM Water Electrolysis Oumeima Jouini ^{1, 2, 3} ¹ ELOGEN, ² ICMMO, ³ University Paris Saclay	<u>284</u>
Bridging iron phosphide and low-content iridium oxide catalysts for proton exchange membrane water electrolysis Mafalda Pina ^{1, 2} ¹ Faculty of Engineering, University of Porto, ² International Iberian Nanotechnology Laboratory (INL)	<u>287</u>
Ionomer-free, well-structured Microporous Electrodes for Reduction of Iridium Loading of PEM Water Electrolyzers Patrick Trinke ¹ 1 Leibniz University Hannover, Institute of Electric Power Systems, Appelstraße 9a	<u>293</u>
Oxidation of Porous Transport Electrodes in Anion Exchange Membrane Water Electrolysis with Alkaline and Pure Water Feed Luis Hagner 1MTEK - Department of Microsystems Engineering, Universität Freiburg	<u>295</u>
Multiscale Modeling and Simulation of Nickel-Based Electrodes for Anion Exchange Membrane Water Electrolysis Steffen Hess 1 Forschungszentrum Jülich	299
Analysis of Oxygen Bubble Behavior in Various Catalyst Patterns for Enhanced PEMWE Performance MinJeong Ju ¹ ¹ University of Seoul	300
3D periodic structure used as an electrode for 3rd generation alkaline water electrolyzers Rodrigo <u>Lira Garcia Barros</u> ¹ ¹ VDL Hydrogen Systems	303
Approach for low-loaded Iridium electrodes for proton exchange membrane water electrolyzer Dilip Ramani ¹ ¹ NV Bekaert SA	304
Degradation Analysis and Accelerated Stress Tests (ASTs) for PEM Water Electrolyzer Tsutomu Ioroi¹ AIST	<u>305</u>
Physico-Chemical Characterization and Preliminary Electrochemical Performance of Proton-Conductor Solid Oxide Electrolysis Cells Emanuele De Bona ¹ ¹ Fondazione Bruno Kessler	<u>307</u>
Low Iridium-Content Materials as Anode Catalysts for PEM Water Electrolysis Annette-Enrica Surkus ¹ Leibniz-Institut für Katalyse	309
Model-Based Techno-Economic Analysis of Strategic Stack Replacement in Water Electrolysis Christoph Löcherer¹¹ Leibniz University Hannover, Institute of Electric Power Systems, Appelstraße 9a, 30167 Hannover, Germany	310
Numerical Investigation of Gas-Liquid Flow Characteristics in a Visualized PEM Electrolyzer Cell Mino Woo ¹ ¹ Korea Maritime and Ocean University	<u>315</u>
Effect of Iron Ion Contamination on the I-V Characteristics in PEM Water Electrolysis Kazuma Shinozaki¹ ¹Toyota Labs	<u>324</u>